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AlJstract-The aim of the present paper is the derivation of boundary variational principles for the
unilateral contact problem. Using the inequality constrained principles of minimum potential and
complementary energy and the equivalent variational inequality formulations we derive first saddle
point formulations for the problems using appropriate Langrangian functions. An elimination
technique allows the formulation of two minimum "principles" on the boundary with respect to
the unknown normal displacements and reactions of the contact region, respectively. It is also
shown that these two minimum problems are equivalent to multivalued boundary integral equations
involving symmetric operators. The theory is illustrated by numerical examples solved both by the
FEM and the OEM.

I. INTRODUCTION

In recent years a large number of structural problems involving unilateral constraints have
been studied[l, 2]. The convexity of the arising superpotentials[3] leads for a large class of
problems to variational inequalities expressing the principle of virtual or complementary
virtual work in its inequality form. These variational inequalities are equivalent to the
minimum of potential or complementary energy which after discretization permits the
numerical treatment by using an appropriate non-linear programming algorithm. One
important class of unilateral problems is the unilateral contact problems arising when an
elastic body is in ambiguous contact with a rigid or deformable support. The term "ambi
guous" means that we do not know a priori which parts of the body are in contact with the
support and which not and this fact renders the problem unilateral. We pay special attention
to the case ofa rigid support since the unilateral contact problem with a deformable support
can be reduced to the rigid support problem. This is the problem posed by Signorini in
1933 and studied by Fichera in 1963[4,5].

For the numerical treatment we have to solve an inequality constrained quadratic
programming (QP) problem either with respect to the displacements (minimum ofpotential
energy) or with respect to the stresses (minimum of complementary energy). Several tech
niques have been applied solving directly or indirectly a minimization problem (see e.g.
Refs. [6,7] and the references cited in Ref. [2]). However, all these techniques have as a
main disadvantage that due to the use of QP algorithms, either the size of the structure to
be solved is small (substructuring is necessary), or major changes of the existing general
FE programs are necessary and considerable computer time is needed. In order to avoid
all these cases an active constraint strategy method was proposed in Refs [8,9]. This method
is based on a "translation" in the language of structural analysis, of the QP theorems of
Theil and Van de Panne and uses completely the existing classical linear structural analysis
computer programs. Thus unilateral problems with a large number of unknowns could be
safely solved. However, the main disadvantage of this method is, generally speaking, the
low level of automatization concerning the determination of each linear substructure, i.e.
the determination of the active constraints.
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In order to avoid this difficulty we develop here a more delicate method, based on
Lagrangian formulations, which leads to new inequality constrained minimization problems
with respect to the unknown reactions (or displacements) of the contact zone. Thus we
obtain discrete QP problems having symmetric full matrices but with a drastically reduced
number of unknowns in comparison to the initially formulated minimum problem of the
potential or the complementary energy. It is worth noting that this method reveals many
of the properties of the classical boundary integral equation methods and from this stand
point the proposed method can be seen as a first attempt towards the effective calculation
of inequality problems by boundary integral "equations". The developed method in the
present paper holds for a large class of inequality (or unilateral) problems (i.e. for problems
leading to variational inequalities) besides the unilateral contact problem: we mean here
all the unilateral problems for which the minimum of the potential or the complementary
energy is constrained by linear inequality constraints and does not include non-differentiable
superpotentials (cf. in the friction problem the complementary energy formulation). The
fact that non-linear constraints can be linearized as well to yield the same situation as before
extends considerably the validity of the proposed method.

2. PRIMAL, DUAL AND MIXED FORMULATIONS OF THE PROBLEM

We consider a three-dimensional linear elastic body. The procedure followed is general
and holds also for shells, plates, beams, etc. generally speaking for all structures permitting
a formulation of the equilibrium problem in terms of a Lagrangian formulation.

Let n be a subset of the three-dimensional Euclidean space R3 with a boundary r. n
is occupied by a linear elastic body and is referred to an orthogonal Cartesian coordinate
system OXIX2X3. r is decomposed into three mutually disjoint parts r u, r F and r s. We
demand that on r u (resp. r F) the displacements (resp. the tractions) are given and that on
r s the Signorini-Fichera boundary conditions hold. We denote also by n = {n;} the outward
unit normal vector to r by S = {S;} = {GijnJ the traction vector on the boundary, where
G = {GjJ is the stress vector. Further SN (resp. ST) is the normal (resp. the tangential)
component of S with respect to r; UN and UT are the corresponding components of the
displacement u. Let B= {Bij} be the strain tensor (assumption of small strains) and
C = {C jjhk } i,j, h, k = 1,2, 3 Hooke's tensor ofelasticity obeying the well-known symmetry

(1)

and ellipticity conditions

(2)

On r u we assume that

Uj = Vj , Vj = Vj(x) (3)

and on r F

Sj = Fj , F; = F;(x). (4)

(2)/
/

/
/

/
/

tg.,..k/
/

b.

The Signorini-Fichera boundary condition reads: if UN < 0 then SN = 0 (no contact), if
UN = 0 then SN ~ 0 (contact), or equivalently (see Fig. 1(a))

-SN

o. trJ 1(2)

-----.J.._h_J...'---_
UN

Fig. I. Reaction-<lisplacement diagrams for the unilateral contact laws.
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Relations (5) must be completed with the condition in the tangential direction

1467

(5)

(6)

where CT is a prescribed tangential force distribution. Besides law (5) we can consider the
more general case depicted in Fig. I(a) (dotted lines) which corresponds to the unilateral
contact with a rigid support at distance h from the body.

It is interesting to note that the more realistic unilateral contact laws with a linearly
deformable support of Fig. I (b) (Winkler spring) lead to the same variational expressions
as the ones of Fig. I(a). Indeed, it is sufficient to enlarge the body a by fictitious lincar
elastic springs of zero length along r s with spring constant k and assuming that the laws
of Fig. I (a) hold. The foregoing holds also for any physically meaningful combination of
the diagrams of Fig. 1(a) with the linear SN-UN law.

Further we have

(7)

(8)

(9)

wheref = {/;} represents the volume force vector and the comma denotes partial derivation.
We denote further by Vthe vector space of the displacement VI and let V be the set of

kinematically admissible displacement fields

V= {vlv = {VI}' VIE V, VI = VI i = 1,2,3 on r u} (10)

without taking into account the constraints on r s. Due to the Signorini-Fichera boundary
conditions the kinematically admissible set of displacements takes the form

(11)

We denote by (J, v) the work done by the force f = {/;} for the displacement V= {VI} on
a and by [J, v]r the corresponding work on r c r (i.e. In /;VI dO), etc. Further let

(12)

be the bilinear form of elasticity and let TI be the potential energy

It is well known[4, 5] that the problem

TI(U) = min {TI(V)IVEK}

(13)

(14)

characterizes the position of equilibrium. Problem (14) has one and only one solution (for
vIEH1(O}-the Sobolev space

ClihkEL lXl and /;, CT"FfEL 2
, VI EH I/

2)

which equivalently, satisfies the variational inequality
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ueK, a(u,l'-u)-l(v-u) ~ 0 VveK (15)

with lev) = (f,v)+[F,vk+[CT,VTJr,. Relations (14) or (15) are the primal formulations
of the BVP.

For the mixed formulation we introduce the convex subset (which is closed in the
previously mentioned functional framework)

(16)

Let Uo be a kinematically admissible displacement field, i.e. such that UOi = V; on r u, and
let

ii = U-Uo, v = V-Uo

where

ii,veVo = {vlv= {v;}, vie V, vj=O onru}.

Then relations (15) take the form: find u = ii+uoEKsuch that

a(ii,v-ii)-l(v-ii)+a(uo,v-ii) ~ 0 Vv = v+uoEK

and relation (14) becomes

fi(ii) = min {fi(V) IvE K}

where

fi(6) = ~a(v,v)-I(V)+a(uo,6) = TI(v)-TI(uo)

and

(17)

(18)

( 19)

(20)

(21)

(22)

Note that more generally Uo may represent any other initial strain field (temperature
distributions, given dislocations, etc.). We denote by [the functional

[(v) = 1(V)-a(uo,6). (23)

Here JlN is the Lagrange multiplier for the problem. Through this Lagrange multiplier we
introduce the boundary condition (5) on r s. Indeed as it is easy to verify

inf fi(6) = inf (fi(6) +1",(6))
'" V

o

where

But

if VN+UON ~ 0 on r s

otherwise.
(24)

and thus

IK(V) = sup [[-JlN,VN+UoNJrsJ
J.lN:E;; 0

(25)
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(26)

The Lagrangian of the problem is a real-valued function If on Vox L defined by the relation

Thus the mixed variational formulation of the Signorini-Fichera problem now reads (cf.
Refs [10-12]) : find the saddle point {w, AN} e Vox L of If on Vox L, i.e.

(28)

It can be proved in the previously mentioned functional framework by the methods given
on p. 57 of Ref. [13] that problem (28) has a unique solution {w,AN}e VoxL such that
w= ueKand AN = SN(U) on f s .

The dual formulation with respect to the stresses results easily from problem (28) if
we consider the statically admissible set of stresses

A = {O'I 0' = {O'ij}, O'ij = O'j;, O'ij,j+ /; = 0 in n, SN eL,

ST/ = CT, on f s, Si = Fi on f F}. (29)

The stress field at the position of equilibrium 0' is characterized by the minimum of the
complementary energy[14]

IJC(O') = 1A(0',0')-[U,0']ru over A, i.e.

IJC(O') = min {IJC(r)lreA}.

Here 1A(0', 0') = (CO', 0') where C = {Cjjhk} is the inverse tensor to C.

(30)

(31)

3. FORMULATION WITH RESPECT TO THE TRACTIONS OF THE CONTACT AREA

If {w, AN} e Vox L is the solution of problem (28) then we can write problem (28) as it
is obvious equivalently in the form

(32)

We set

(33)

assuming for the moment that JlN e L is given. Then problem (33) is equivalent to the
following bilateral problem: find U = U(JlN) e Vosuch that

Obviously problem (34) is the expression of the principle of virtual work for a fictive
structure resulting from the initial unilateral one by eliminating the unilateral constraints
on r s and by adding the corresponding reactions JlN' The position of equilibrium of this
structure is characterized by the minimization problem (33) for the potential energy of this
fictive structure. The solution Uof problem (34) can be considered, due to the linearity of
problem (34), as the sum of UI e Vo and U2 e Vo which are solutions of the two following
bilateral problems:
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Fig. 2. The problem decomposition (force method).

(35)

(36)

respectively. Obviously both problems describe the equilibrium configuration of two bilat
eral structures resulting from the initial one by ignoring the unilateral support and assuming
the appropriate boundary parts with zero loading.

In the case of problem (35) the structure is loaded by the forces f in nand CT on r s
tangentially and F on r F, whereas on r s the normal loading is zero. Moreover,· the initial
displacement field Uo is considered. In the case of problem (36) the structure is subjected to
normal forces Ji.N on r s and we assume zero forces in n on r F and on r s in the tangential
direction. Accordingly the solutions Ul and U2 are uniquely determined, as it is well known
from the classical (bilateral) elasticity (cf. e.g. Ref. [12]). For these two classical bilateral
structures we can write the solution in terms of Green's operator G. This operator is the
same for the two structures due to the "same" boundary conditions holding in both cases
in the form of Fig. 2. Thus we may write in both cases the solution of the problem as
follows:

Note that the yet unknown force distribution Ji.N must be admissible in the sense of relation
(16), i.e.

JlNEL. (38)

Thus from problems (33), (35) and (36) we obtain by setting v= UI in problem (35) and
iJ = U2 in problem (36) that

O\(JlN) = fi1(U,JlN) = ~a(u, u)-I:JlN, UN +UON)rs - [CT , uTlrs - (f, U)- [F, UJrF+a(uo, U)

= -I:JlN' uNllrs -~[PN,UN2)rS -!</'Ul)- UF, udr,

- UCT, uTIlrs - [PN, uONlrs + ~a(uo, Ul)

= -I:JlN' [G(l)JNlrs - ~I:JlN' [G(JlN)lNlrs + ~a(uo, G(l)

- Hf, G(l)- HF, G(l)JrF - HCT, G(l))rs -I:JlN' UON)rs'

Further we denote by {3 the bilinear form

and by'}' the linear form

(39)

(40)
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(41)

:n I ()IN) = - ~P(JlN' JlN)+Y(JlN)- Hf, G(l)- HF, G(l)]rF

-HCT,G(l)]rs+~a(uo,G(l). (42)

From eqns (32), (33) and (42) we can formulate the following minimization problem with
respect to the unknown boundary tractions JlN :

(43)

The term -Hf,G(l)-HF,G(l)]rF-HCT,G(l)]rs+!a(uo,G(l) does not depend on JlN
and for this reason is omitted. We denote obviously again by AN the solution ofthis problem.
From eqns (33), (27) and (34) we obtain another expression for :n I

= !a(a, U) - UlN, aN +UON]rs- [F, UJr
F

- (f, 11)- [CT , aT]rs+a(uo, 11)

= !a(a,U)-a(a,I1)-UlN,UON]rs = -!a(a,I1)-UlN,uONlrs'

Thus for JlN = AN we have obviously a= wand thus

Further we shall show that

(44)

(45)

(46)

where UE Kis the solution of the primal problem (20). Indeed let us choose AN E L such as
to satisfy eqn (46) where a is a solution ofeqn (20) and w=aEK. Then (a, AN) is the unique
solution of the saddle point problem (28).

The proof will be completed if we prove, first, that the chosen AN is a minimizer of:n I

over L and secondly that the solution ofeqn (43) is unique. Indeed from eqns (28) and (33)
we obtain that

But

and thus

9'(w, AN) = inf 9'(6, AN) =:n I (AN)'
ve Vo

(47)

(48)

(49)

It remains to show the uniqueness of the solution of problem (43). Indeed in the functional
framework introduced before, it can be shown also that problem (43) has a unique solution.
The proof uses functional analytic theories and is omitted here (see in this context Ref. [15]).
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...... _------

[IJ.N. [G( VN )]N] r
s
=[ vN.[GCIJ.N)]N] r

s
Fig. 3. The Betti theorem.

It is interesting to note the fact that the quadratic form (J(Jl.N, Jl.N) is symmetric. Indeed
from eqn (40) using the linearity of G and the reciprocal theorem of Betti (p. 391 in Ref.
[16]) we can easily verify that (see also Fig. 3)

(50)

We close this section by giving two equivalent formulations of problem (43). The first is a
variational inequality: find AN E L such as to satisfy

(51)

and the second a multivalued integral equation on the boundary part r s of the structure
which reads

(52)

where IL(i'N) is the indicator of the admissible set L, i.e.

(53)

Relation (51) is equivalent to problem (43) by using the well-known results in the theory
of variational inequalities (see Refs [1,2,13] and p. 40 in Ref. [4]). Relation (52) is equivalent
to inequality (51) by the definition of the subdifferential a (see e.g. Ref. [13]). Finally we
pay some attention to the other boundary conditions depicted in Fig. 1. They give rise
only with slight modifications to the same expressions as the classical Signorini-Fichera
boundary conditions studied, which correspond to Fig. I(a)(l). Thus for Fig. 1(a)(2) Kin
relation (11) is defined by the inequality UN ~ h. For boundary conditions of Fig. 1(b) the
only difference is that we have to consider the energy of the added fictive springs with
constant k. This amounts to say that Green's operator in eqns (37) must be taken for the
enlarged structure with the attached fictitious linear springs.

4. FORMULATION WITH RESPECT TO THE DISPLACEMENTS OF THE CONTACf AREA

Let us consider again the saddle-point formulation (32). In the previous section, in
order to derive a variational formulation on the boundary with respect to the unknown
unilateral contact tractions, we have considered sup inf 2(6, Jl.N) with Jl.N as given.

L Vo
Here we will work on inf sup 2(6, Jl.N) or on an equivalent saddle-point formulation

Vo L

by considering i5 as given. We note that from eqns (17)
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= sup inf [!a(v-uo,v-UO)-(JiN,VN]rs-[CT,VT-UoT]rs
I'NeL ve V

- [F, v-uo]rF - (f, v-uo)+a(uo, v- uo)]

= sup inf [!a(v, v)+ !a(uo, uo)-a(v, UO)-[JlN,VN]rs
I'NeL veV

= inf sup [!a(v,v)-[JlN,VN]rs-[CT,VT]rs-[F,vlrF
veVI'NeL

-(f,v)-n(uo)] =inf SUp .2'(V,J.lN)-n(UO)'
VE v I'NeL

Here we have introduced the modified Lagrangian

1473

(54)

We recall that

{
0 if ~O

r..] VN "'" = IL(v)sup -lJ4N, VN r s = l'f "
I'N'" 0 ao VN > 0

and write

inf sup .2'(V,J.lN) = inf [!a(v,v)+h(v)-/(v)] = inf n(v).
veV I'NeL veV veK

But

!a(v,v) = !<C·e(v)·e(v» = sup «t,e(v»-!A(t,t»
tel:

(56)

(57)

(58)

where I denotes the set of all symmetric stress tensors. Indeed by simple derivation with
respect to t we find that the supremum is attained for

(59)

which yields eqns (58). Thus

infsup .2'(V,J.lN) = inf n(v) = inf sup {(t,e(v»- (f,v)-[F,v]rFv L veK veK tel:

- [CT, VT]rs - !A(t, tn. (60)

We note also that for every v~ V the Green-Gauss theorem implies that

where T, TN and TT are the boundary tractions corresponding to t. Note that eqn (61) is
the principle of virtual work for the free structure. From eqns (60) and (61) we obtain that
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inf sup [- (rl}.)+};, V;) + [T - F, vJr r + [T, Uk· + [TN, VNJrs + [TT- CT, VT]r -1A(r, r)]
veK tEI: S

= inf sup [[T, UJr +[TN,VN]r -1A(r,r)] (62)
l'€K 1"E!1 u S

where

TT, = CT, on r s}. (63)

Indeed

sup [- (rij.) +};, V;) + [T - F, v]rF + [TT - CT,V]r
sTE :!:

{
o if r i}.} +}; = 0,

-
00 otherwise.

Thus

TT = CT
, '(64)

inf sup 2(v, Ji.N) = inf ll(v) = inf sup L(VN' r)
v L VEK VEK TE:!:,

where the new Lagrangian L is given by

(65)

(66)

Note also that due to the duality[2, 13] between the primal and the dual problem (14) and
(30) the relation

inf ll(v) = sup- llC(r) = sup (-1A(r, r) + [T, U]r u - h(r))
veX tEA rel:l

= SUp inf ( -1A(r, r) + [T, U]r u + [TN, VN]r) = SUp inf (VN, r) (67)
fer I LleK rer] veX

holds. Here A is defined in eqns (29)

{
o if TN ~° (i.e. if TNEL)

h(T) = ,-,r,

V-' otherwise (i.e. if TN ¢ L)

and

Thus

inf sup L(VN' r) = sup infL(VN' r) = L(UN' a).
VEK TE:!:, TE:!:, VEK

(68)

(69)

(70)

The last equality in (70) can be easily verified by writing the foregoing relations for the
actual solution {u, a, S}, etc. (i.e. eqn (65), etc. without inf sup, inf, etc.). A useful remark
is that besides .!l' and L another Lagrangian has also been obtained, namely the expression
on the right-hand side of eqn (60). This Lagrangian can be obtained directly if one applies
the saddle-point theory of Ref. [13].
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From the above relations and the fact that the saddle-point problem (28) has a unique
solution we can easily verify that the corresponding saddle-point problem with respect to
L (cf. eqn (60» admits also a unique solution 0" E ~ I and UN = UN(O") ~ 0 (cf. also Ref. [13]).

Let us denote further

SUpL(VN' r) = ft 2(VN) or
fEI)

inf - L(VN' r) = - ft 2(VN)
tEI,

(71)

assuming that VN ~ 0 is prescribed. Then eqns (7 I) correspond to the variational inequality:
find 8 = 8(V)E~1 such that

(72)

Inequality (72) expresses the principle ofcomplementary virtual work for the structure (the
unilateral displacements on r s are assumed as given and equal to VN)'

Let us introduce a stress field 0"0 which is statically admissible in the sense of ~ J, Le. it
satisfi(:s the equation of equilibrium and the static boundary conditions on r F and on r sin
the tangential direction. Then we make the substitutions

a= a-O"o, i = r-O"o.

We verify easily that a, iE~o where

(73)

Then inequality (72) takes the form: find a = a(v) E ~o such as to satisfy

(75)

Here S, T are the boundary tractions corresponding to 8, i, respectively. Due to the fact
that ~o is a linear space we may easily show (set i-a = ±cPE~o) that inequality (75) is
equivalent to the variational equality (i.e. to a classical bilateral problem)

(76)

We note that

A(O"o,f) = 160ijiij dO = - fUO;iij,j dO+[uoN, TN]rs+[UoT, TT]rs

+ [uo, T]rF + [uo, T]ru = [UON' TN]rs + [uo, 1'Jru 'Vi E ~o (77)

where 60 = C' 0" 0 and rio is a displacement field corresponding to 0"0' Note that we are free
to assume that 0" 0 is the unique solution of a bilateral problem having on r u and on r s zero
displacements. In this case eqn (77) takes the form

(78)

If 0"0 is such that on r u eqn (I) is satisfied and on r s, UON = 0, then

(79)

Further we follow the general case of eqn (77).
Then a in eqn (76) can be written generally as the sum 8 1+a2 where a. and a2 are

solutions of
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/'f=O

:0
F=O fF

U, =H (VN )

Fig. 4. The problem decomposition (displacement method).

(80)

(81)

respectively. Both eqns (80) and (81) are respectively expressions of the "principle" of
complementary virtual work for fictive bilateral structures resulting from the previous one
in the following way: for eqn (80) (resp. eqn (81» we assume a structure n under the action
of "given" displacements VN (resp. - UNo) on r s, zero forces in n, on r F and tangentially
on r s, and zero (resp. V - uo) displacements on r u. Due to the fact that both variational
equalities correspond to bilateral structures, 8 1 and 8 2 are uniquely determined[12]. Obvi
ously if eqn (79) holds, eqn (76) takes the simplified form of eqn (80), i.e. 8 = 8 I' From
eqns (80) and (81) we obtain that

(82)

where H denotes the Green operator corresponding to the boundary value problems (80)
and (91).

For both bilateral structures corresponding to eqns (80) and (81), H is the same because
for both structures the "same" boundary conditions hold (Fig. 4).

We now combine eqns (71) and (73), then from eqns (77) (for f = 8), (80) (for f = 0'1)'
and (81) (for f = 8 and f = ( 1), we obtain that

- - - 1n 2(VN) = L(VN,8) = [S, V]r,,+[SN,VN]r,-2A(8,8)

= [S+So, Vk+ [SN +SON, VN]r s - ~A(0',8)- ~A(O"o, O"o)-A(O', 0"0)

- - 1 -- 1 - -= [S, V]r v + [SN, VN]rs - 2A (0", 0")- 2A(O"O' 0"0)- [uo, S]ru - [UON, SN]rs

+ [So, V]r,,+ [SON, VN]rs

= [S2' V]r" + [Sm, VN]rs + HSIN, vNk - HUON, S2N]rs - Huo, S2k

- HV, S2]+ [So, V]r" + [SON, VNk - ~A(O"o, 0"0)

= [H(V, uo), V]r"+ [[H(U, UO)]N, I'N]r,+mH(VN)]N, VN]rs

- HUON, [H(V, UO)]N]rs- Huo, H(V, uo)]r" -1[V, H(V, uo)]

+[So, Vk.+[SON,VNk ~A(O"o,O"o).

Let us introduce the bilinear form

(83)



Boundary minimum principles for the unilateral contact problems

and the linear fonn (H is a linear operator)

We denote also by R (U, Uo, (10) the remaining constant tenns in eqn (83). Thus

1477

(84)

(85)

fi2(vN) = SUpL(vN,r) = L(VN,8) = ~15(VN,VN)-'(VN)+R(U,uo,O'o) (86)
TEI:,

and from eqn (70) we see that we can fonnulate the following minimization problem with
respect to the unknown boundary displacement VN :

(87)

Using the functional framework introduced in Section 2 we can show that the minimum
problem (87) admits a solution which is uniquely determined. The proof surpasses the
purposes of the present paper and is omitted here.

Further we shall show that if UN is the solution of problem (87) then UN corresponds
to the stress field (1, Le.

(88)

where 0' e A is the solution of the minimum complementary energy problem (22): let us
choose UN such as to satisfyeqn (88), where 0' is the solution ofeqn (31). Then (UN, 0') eK x:E 1

is the unique solution of the saddle-point problem (70) and we can verify that UN(O') is a
solution of the minimum problem (87). Then the uniqueness of the solution of problem
(87) implies eqn (88). Again we can verify by using Betti's theorem that 15 is symmetric, Le.
that (Fig. 4)

(89)

We close this section by giving the analogous fonnulation to relations (51) and (52). The
first is a variational inequality: find UN e K such as to satisfy

(90)

The second is a multivalued integral equation on the boundary part r s of the structure
which reads

(91)

Each one of the last two fonnulations is equivalent to the minimum problem (87).
Note that ifwe choose as 0'0 a stress field satisfying eqn (78) or (79) then the expressions

in eqn (81) are simplified. We get again a quadratic minimization problem of the fonn of
(87). We arrive at the same result if the unilateral contact boundary conditions with a
deformable support hold. In this case solutions (80) are obtained with respect to the enlarged
structure by adding the appropriate linear springs.

5. DISCRETIZATION OF THE PROBLEM-REMARKS AND NUMERICAL APPLICATIONS

As we have shown in the previous sections two minimum problems hold on the part
of the boundary of the body subjected to the unilateral contact conditions, problem (43)
with respect to the unknown reactions and problem (87) with respect to the unknown
displacements. They have been derived from appropriate Lagrangian fonnulations of the
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problem. Obviously the same method can be applied to discretized structures and minimum
principles analogous to problems (43) and (87) can be obtained. It should be noted here
that in the framework of the discretized theory such minimum problems with respect to the
unknown boundary displacements have already been formulated through elimination of
the internal degrees of freedom by means of the superelement technique[17]. An analogous
variational principle has been obtained in Ref. [7] for a discretized structure using a Cholesky
decomposition technique. For a continuous structure the minimum problems (43) and (87)
have to be discretized (see in this respect also Ref. [J 5]). To illustrate this procedure let us
discretize problem (43) for a plane polygonal elastic body: we assume that 0 c 1R 2 is a
polygonal domain and let for simplicity U = 0 on r u. Let {Dh}, h -+ 0 positive, be a family
of finite element discretizations of n. To any finite element discretization d.E {D.} we
attribute a finite dimensional subspace flh where

Here C(O) denotes the space of continuous functions on nand peT) denotes a space of
polynomials over the finite element T. The degree of the polynomial depends on the finite
element scheme chosen. We introduce further a family {DH }, H -+ 0 positive, of partitions
on r s . The nodes of {DH} generally do not need to coincide with the nodes of {D.} on r s.
If they coincide we write symbolically h == H. Let for instance p(n be the space of linear
polynomials and let us assume a family of triangular finite elements, regular with respect
to their angles (cf. p. 138 in Ref. [18]). Let {DH} be a regular family of partitions on r s in
the sense that, if a\H), a~H), ... ,a~~1) are the nodes of the partition D H' then there exists
c > 0 such that min Hi Imax Hi > C where Hi is the length of aiH) aiZ\. If Po(aiH), aiZl) is
the set of all constant functions defined on aiH) •aiZl then we introduce the space

and the set

E - {I (H) (H) P «H) (H) ) . - I 2 }H - fiHN fiHN over ai ai+ lEo aj ,ai+ J, I - , , ... , m (93)

(94)

It is obvious, that now we are in the position to formulate directly, by means of Galerkin's
method the finite dimensional problem corresponding to problem (43): find AHNE LH such
as to minimize nJ(fiHN) over L H. However, the numerical treatment of this problem is
difficult because the explicit form of Green's operator G is known only in special cases.
Therefore, we introduce the stiffness matrix Kh , which results for the discretization ofn, or
equivalently, by formulating the bilinear form a(u, v) on flh' The inverse K;; I plays the role
of G in the approximation scheme and thus the finite dimensional problem reads: find
AHNELHsuch that

(95)

where

and J;,Eflhis the discretized form of l, i.e. (equality of works)

(J;" Uh) = (T, Uh) ';JUh E flh'

(96)

(97)

We can easily verify that, if (fiHN,UhN) = 0 ';JUhE flh implies fiHN = O. nih is a strictly positive
definite quadratic function of fiHN and therefore by the well-known theorem of quadratic
optimization the discretized minimum problem (95) admits a unique solution.

Analogously we may proceed for the case of the minimum problem (87). Until now we
have applied a direct mathematical discretization to the minimum problem (43) and (87)
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which seems to be quite cumbersome. However, a careful observation of the mechanical
meaning of problems (43) and (87) and of the method for their derivation facilitates the
procedure considerably and constitutes the great advantage of the proposed method.

Let us consider first the minimum problem (43). In order to calculate the discrete form
of II. we proceed as is obvious from problems (35), (36), (40) and (41) as follows. We
consider first the structure nh obtained from the initial one by assuming only the kinematical
constraints on r u. Then we solve this underconstrained structure for unit load JlN I = 1 on
the first node of r s and we obtain the corresponding normal displacements of all the m
nodes of r s. These displacements constitute the first column of a matrix B. We repeat this
procedure for the second node, etc. and thus we form the whole symmetric matrix B. The
normal displacements of the nodes of r s for the same structure under the given external
actions constitute a vector g. Then the solution of the discrete quadratic programming (QP)
problem

(98)

where II = {JlN I' ••• , J.lNJ, supplies the unknown normal reactions on r s. Once the optimal
solution is obtained the displacement and stress fields of the whole structure are calculated
by back substitution.

We proceed analogously for problem (87), as it becomes obvious by considering eqns
(80), (81), (84) and (85). We consider first a structure no obtained from the initial one by
assuming Vj = 0 on r u, TT = 0 on r sand Ti = 0 on r F' Then we solve this structure by
imposing a unit normal displacement on the first node ofr s and zero normal displacements
on the other nodes of r s. The solution of this kinematically overconstrained structure no
gives the corresponding normal reactions of all the m-nodes ofr s. They constitute the first
column ofa matrix D. We repeat this procedure for the second node, etc. and thus we form
the whole symmetric matrix D. The normal reactions of the nodes of rs for a structure no
having Vj - UOj displacements on r u, TT = 0 on r s, Tj = 0 on r F, and UON normal dis
placements on r s together with the reactions SON, which include the inftuence of the loading
CT , F, f of the nodes of r s, constitute a vector z. Then the solution of the discrete QP
problem

(99)

where v = {vN I' ••• , VNJ gives the unknown normal displacements on r s. If, more specifi
cally, Uo is such that on r u eqn (I) is fulfilled and on r SUON = 0, then eqn (85) takes the
simplest form

(100)

since a2 = 0 and thus z is obtained simply from a structure loaded by the external actions
(i.e. J, CT , F j), having the given displacements on r u and satisfying UON = 0 on r s. It is to
be noted that in the foregoing procedure we can have also as external "actions" initial
strains. Note the boundary variational principles (43) and (87) exhibit a kind of inherent
duality in the sense of the duality between the "force" method and "displacement" method
in the classical theory of elasticity. The obtained QP problems are symmetric positive
definite and have full matrices but a small number of unknowns (i.e. the normal reactions
or displacements on r s) compared to the QP formulation ofthe problem without elimination
of the internal DOF (see, e.g. Refs [6, 8, 9, 14, 19]).

It is also very important to note that the matrices D, B and the vectors z and g are
obtained from the solution of bilateral structures under unit imposed displacements or
forces by applying either the FEM or the BEM as, for instance, it is advised for infinite
media. Also any analytical approach available (i.e. in plate problem diagrams for "Ein
ftussfelder") can be used. Then the QP problems obtained, can be solved by any available
QP algorithms. The whole procedure, i.e. the formulation of matrices D, B, z and g and
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the QP algorithm, can be fully automated and no external intervention is needed as it is,
Refs [8, 9].

The proposed method can be considered also as an integral "equation" method for
the treatment of the unilateral contact problem. Indeed eqns (52) and (81) are multivalued
boundary integral equations. An extension of the direct BEM, as it is known for bilateral
problems, to the present unilateral contact problem would lead to non-symmetric linear
complementarity problems (LCP). Indeed the relations connecting Sj and Uj on r involve
non-symmetric matrices (cf. e.g. p. 98 in Ref. [20]) and these relations combined with
relations (5) do not allow formulation ofa symmetric LCP. Analogous results are obtained
with the indirect BEM (cf. also in this context p. 160 in Ref. [2]). The numerical solution
of non-symmetric LCPs presents considerable difficulties due to the lack of well functioning
algorithms. On the other hand the multivalued integral equation approach as presented
here, leads to symmetric positive definite LCPs: indeed the minimum problem (98) (resp.
(99» is equivalent to the LCP (cf. p. 352 in Ref. [2])

resp.

BJl-g ~ 0, Jl ~ 0, JlT(BJl-g) = 0

Dv-z ~ 0, v ~ 0, vT(Dv-z) = O.

(101)

(102)

Therefore, besides the well developed QP algorithms also the corresponding LCP algorithms
can be applied for the numerical treatment. It is worth noting also that boundary minimuIll
problems can be formulated for all classes of monotone unilateral constraints on the
boundary, such as, e.g. friction problems, plastic hinge problems, and in the interior of the
body, such as e.g. in plasticity, locking materials, etc., with the difference that in these cases
(98) and (99) involve also additional convex non-differentiable energy functionals. This
theory will be presented elsewhere.

As a first example we have treated the space frame of Fig. 5. The springs denote the
unilateral constraints. Besides the external forces beams 51-55 of the frame are subjected
to a uniform temperature distribution t, = 30°C.

The minimum problem (98) was solved by the iterative algorithm of Hildreth and
d'Esopo. Matrix B is a full symmetric 25 x 25 matrix the elements of which are obtained
by applying unit loads in the directions of the unilateral constraints as already described.
The corresponding bilateral structures were calculated by the STRESS program. As a result
we obtain that only constraints 2, 5 and 18 (in the x-direction) are active. Note that the
same structure solved by a direct QP approach[6, 14, 19] would lead to a QP problem
involving a [6 x 36]2 symmetric banded matrix with 6 x 36 unknowns and 25 inequality
conditions, which for this example needs eight times the time needed with the present
method on a PRIME 2250 computer. In the later case the use of a better QP algorithm is
necessary. This could reduce computation time for the direct QP approach (but also in the
proposed method as well). Analogous is the advantage of this method compared with the
linearization method proposed in Refs [8, 9] which is based on the Theil and Van de
Panne[21] optimality criterion; this is obvious especially for the present example, for which
due to the relatively large number of unilateral reactions, user's intuition does not conduct
the algorithm quickly to the solution.

As a second example we treat the plane elasticity problem of Fig. 6. Due to the fact
that all the supports are unilateral we can use the minimization problem (99) and we
determine the unknown unilateral displacements.

The resulting overconstrained bilateral structures are solved by a BE computer program
using constant displacement boundary elements. It is to be noted that for this example the
linearization procedure of Refs [8, 9] cannot be used due to the fact that all the constraints
are unilateral. For the same reasons the minimization problem (100) cannot be applied as
well. Finally the example of Fig. 7 was solved by both variational principles (98) and (99).
The intermediate bilateral structures were solved by applying the BE technique as before.
Both methods give an active constraint, constraint 15, and therefore the remaining results
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are the same. It is obvious that the proposed method has great advantages for large
structures with a relatively small number of unilateral constraints. Moreover, the resulting
QP problems with a small number of unknowns which must be solved do not compel us to
use a modern and powerful QP solver; we content ourselves with a simple and relatively
old iterative algorithm such as the Hildreth and d'Esopo algorithm. Finally, it should be
noted that the whole method due to its structure based on Lagrangian formulations (cL
also Ref. [22]) is very well suited for parallel computation (calculations of the matrices of
(98) or (99); use of an iterative QP algorithm), which does not happen in this extent for
the direct QP approach and the linearization method.
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